Revision 2 (Solutions)

Semester Two Examination

Question/Answer Booklet

MATHEMATICS METHODS UNITS 1 AND 2 Section Two: Calculator-assumed

Student Number: I

In figures

In words

Teacher name

Time allowed for this section

Reading time before commencing work: Working time for section:

ten minutes Fifty minutes

Materials required/recommended for this section

To be provided by the supervisor

This Question/Answer Booklet Formula Sheet (retained from Section One)

To be provided by the candidate

Standard items: pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters

Special items: drawing instruments, templates, notes on two unfolded sheets of A4 paper, and up to three calculators approved for use in the WACE examinations

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

Section Two: Calculator-assumed

This section has five (5) questions. Answer all questions. Write your answers in the spaces provided.

Working time for this section is 40 minutes.

Question 1

The quadratic function $f(x) = ax^2 + bx + c$ passes through P(5,9) and has roots at x = -4and x = 7.

- Determine the values of the constants a, b and c. (a)
 - Solution f(x) = a(x+4)(x-7)f(5) = 9 = a(9)(-2) $a = -\frac{1}{2}$ $f(x) = -\frac{1}{2}(x+4)(x-7)$ $= -\frac{1}{2}x^2 + \frac{3x}{2} + 14$ $a = -\frac{1}{2} = -0.5, \qquad b = \frac{3}{2} = 1.5,$ *c* = 14 **Specific behaviours** ✓ writes in factored form \checkmark uses given point to determine *a* ✓ expands and clearly states all values
- State the location of the *y*-intercept of the graph y = -3f(x). (b)

Solution
y = -3(14) = -42
Specific behaviours
✓ correct y-value

(c) State the location of the roots of the graph y = f(4x).

Solution

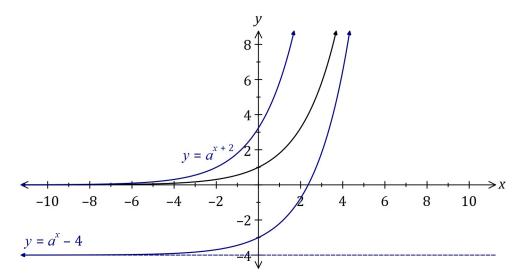
$$x = \frac{1}{4}(-4) = -1$$

$$x = \frac{1}{4}(7) = \frac{7}{4} = 1.75$$
Specific behaviours
 \checkmark uses correct horizontal dilation
 \checkmark correct *x*-values

(6 marks)

(3 marks)

65% (41 Marks)


(1 mark)

(2 marks)

Question 2

(8 marks)

The graph of $y = a^x$ is shown below, where *a* is a positive constant.

(a) On the same axes, sketch and label the graphs of

(i)	$y = a^{x+2}.$	Solution	narks)
		See graph	
		Specific behaviours	
(ii)	$y=a^x-4.$	(i) \checkmark y-int close to (0, 3); \checkmark touches x-axis close to (-7, 0) (ii) \checkmark y-int at (0, -3); \checkmark clear asymptote at $y = -4$	narks)

(b) The graph of $y = a^{x+3}$ intersects the graph of $y = 0.7^x$ when x = -1.9.

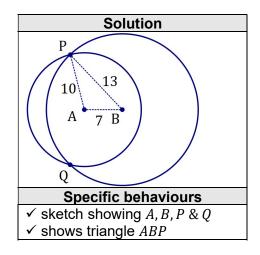
Determine, giving your answers to 3 significant figures,

(i) the *y*-coordinate of the point of intersection. (1 mark)

Solution	
$y = 0.7^{-1.9}$	
= 1.9693	
≈ 1.97 (3sf)	
Specific behaviours	
✓ value that rounds to 1.97	

(ii) the value of the positive constant *a*.

(3 marks)

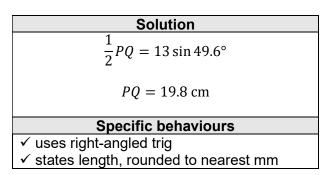

Solution
$a^{-1.9+3} = 0.7^{-1.9}$
a = 1.8516
$a \approx 1.85$ (3sf)
Specific behaviours
✓ writes equation
\checkmark writes solution to equation
✓ rounds answers to (b)(i) & (ii) correctly

Question 3

(11 marks)

Two circles of radii 10 cm and 13 cm have centres at A and B respectively. The centres are 7 cm apart and the circles intersect at P and Q.

(a) Sketch a diagram of the two circles and clearly show triangle *ABP*. (2 marks)


(b) Show that $\angle PBA = 49.6^{\circ}$, when rounded to one decimal place.

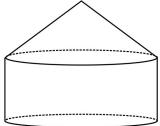
(2 marks)

$\cos B = \frac{7^2 + 13^2 - 10^2}{2(7)(13)}$ $\angle PBA = 49.583$ $= 49.6^{\circ} (1 dp)$
Specific behaviours
✓ substitutes correctly into cosine rule
\checkmark states angle to 2 or more dp then rounds

(c) Determine the length of the chord *PQ* to the nearest millimetre.

(2 marks)

(d) Determine the area common to both circles.


(5 marks)

Solution	
Segment, centre <i>B</i> :	
Angle: $2 \times 49.58 \times \frac{\pi}{180} = 1.731$ $A = \frac{1}{2}(13)^2(1.731 - \sin(1.731)) = 62.83$	
$A = \frac{1}{2}(13)^2(1.731 - \sin(1.731)) = 62.83$	
Segment, centre <i>A</i> :	
$\angle PAB = 98.21^{\circ}$	
Angle: $2 \times 98.21 \times \frac{\pi}{180} = 3.428$	
Angle: $2 \times 98.21 \times \frac{\pi}{180} = 3.428$ $A = \frac{1}{2}(10)^2(3.428 - \sin(3.428)) = 185.55$	
Total:	
$A = 62.83 + 185.55 = 248.4 \text{ cm}^2$	
Specific behaviours	
✓ uses segment formula with angles in radians	
\checkmark states area of segment, centre <i>B</i>	
✓ shows ∠ <i>PAB</i>	
\checkmark states area of segment, centre <i>A</i>	
✓ correct total area	

Question 4

(8 marks)

A composite solid is made from a cone and a cylinder, both of height h cm and radius r cm, as shown below.

The dimensions are such that the sum of h and 3r is 36 cm.

(a) Show that the volume of the solid is given by
$$V = 48\pi r^2 - 4\pi r^3$$
. (3 marks)

Solution
$$h + 3r = 36 \Rightarrow h = 36 - 3r$$
 $V = \frac{1}{3}\pi r^2 h + \pi r^2 h$ $= \frac{4}{3}\pi r^2 h$ $= \frac{4}{3}\pi r^2 (36 - 3r)$ $= 48\pi r^2 - 4\pi r^3$ Specific behaviours \checkmark writes h in terms of r \checkmark substitutes into sum of cone and cylinder volumes \checkmark simplifies

(b) Use differentiation to determine the values of r and h that will maximise the volume of the solid, and state this maximum volume. (5 marks)

Solution
$\frac{dV}{dr} = 96\pi r - 12\pi r^2$ $= 0 \text{ when } r = 0,8$
Optimum value of $r = 8 \text{ cm}$
h = 36 - 3(8) = 12 cm
$V(8) = 1024\pi \text{ cm}^3 (\approx 3217)$
Specific behaviours
✓ differentiates
✓ determines root of derivative
\checkmark states optimum value of r
\checkmark calculates height <i>h</i>
✓ calculates volume V

(8 marks)

Five different letters are selected from the eleven in the word COMRADESHIP. The order in which the letters are selected is not important, so that the selection COMRA is the same as the selection RAMOC, and so on.

- (a) Determine the number of different selections
 - (i) of five letters.
- Solution $n = {\binom{11}{5}} = 462$ Specific behaviours ✓ uses combination ✓ correct number

(2 marks)

(2 marks)

Solution
$n = \binom{4}{1} \times \binom{7}{4} = 4 \times 35 = 140$
Specific behaviours
✓ splits selections
✓ multiplies selections

- (b) Determine the probability that a random selection of five different letters
 - (i) includes the letters M and R.

Solution

$$P = \frac{\binom{2}{2} \times \binom{9}{3}}{462} = \frac{84}{462} = \frac{2}{11}$$
Specific behaviours
 \checkmark selects (i) M & A (ii) other four
 \checkmark states probability

(ii) includes at least one vowel.

Solution
$$P = 1 - \frac{\binom{4}{0} \times \binom{7}{5}}{462} = 1 - \frac{21}{462} = \frac{441}{462} = \frac{21}{22}$$
Specific behaviours \checkmark selects no vowels \checkmark states probability

(2 marks)

(2 marks)

of five letters that contain one vowel and four consonants.

Question 5

(ii)